2022 Newton Falls Water Department Drinking Water Consumer Confidence Report

In 2022 the Newton Falls Water Department had a current, unconditioned license to operate our water system and has prepared the following report to provide information to you, the consumer, on the quality of our drinking water. Included within this report is general health information, water quality test results, how to participate in decisions concerning your drinking water and water system contacts.

WHAT'S THE SOURCE OF YOUR DRINKING WATER?

The Newton Falls Water Department receives its drinking water from the East Branch of the Mahoning River through an intake located on the western bank at the corner of Starr Street and Riverside Drive in Newton Township. The Mahoning River is considered a Surface Water source and requires extensive treatment before it can be used as drinking water.

The Newton Falls Water Department also has emergency/back-up connections with the Lordstown Water System and the Trumbull County Water System. During this past year, no water was received from the Lordstown system or Trumbull County system. On average these connections are used for less than one day each year. This report does not contain information on the water quality from the Lordstown Water System and the Trumbull County Water System but a copy of their consumer confidence reports can be obtained by contacting Cindy Slusarczyk (Lordstown) at 824-2481 and Trumbull County Sanitary Engineer's Office at 675-2775

WHAT ARE SOURCES OF CONTAMINATION TO DRINKING WATER?

The sources of drinking water both tap water and bottled water includes rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include: (A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife; (B) Inorganic contaminants, such as Salts and Metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming; (C) Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses; (D) Organic Chemical contaminants, including Synthetic and Volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems; (E) Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

WHAT IS A SUSCEPTIBILITY ANALYSIS?

For the purposes of source water assessments, all surface waters are considered to be susceptible to contamination, By their nature surface waters are accessible and can be readily contaminated by chemicals and pathogens with relatively short travel times from source to the intake. Based on the information compiled for this assessment, the Newton Falls Protection area is highly susceptible to agricultural runoff from row crop agriculture, oil and gas wells, failing home and commercial septic systems, spills and releases from recreational boating on public reservoirs, new housing and commercial development that could increase runoff from roads and parking lots, numerous road crossings over the Mahoning River and its tributaries, and discharges from wastewater treatment facilities upstream of the intake.

It is important to note that this assessment is based on available data and therefore may not reflect current conditions in all cases. Water quality, land uses and other activities that are potential sources of contamination may change with time. While the source water for the Newton Falls Public Water System is considered highly susceptible to contamination, historically, the Newton Falls Public Water System has effectively treated this source water to meet drinking water quality standards.

FOR MORE INFORMATION:

Additional information on protective strategies and how this assessment was completed is included in the detailed Drinking Water Source Assessment Report for Newton Falls. Please contact the Newton Falls Water Department at 330-872-1808 if you would like more information about the assessment.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health, drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (1-800-426-4791).

WHAT WERE THE TEST RESULTS FOR MY DRINKING WATER?

The EPA requires regular sampling to ensure drinking water safety. The Newton Falls Water Department conducted sampling for bacteria, inorganic, radiological, synthetic organic, and volatile organic contaminants during 2022. Samples were collected for a total of over 70 different contaminants, most of which were not detected in the Newton Falls water supply. The Ohio EPA requires us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Listed next is tabulated information on those contaminants that have been tested for in the Newton Falls drinking water.

WHO NEEDS TO TAKE SPECIAL PRECAUTIONS?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immune-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infection. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

LEAD EDUCATIONAL INFORMATION

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and homes plumbing. The Newton Falls Water Department is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (see above) or at http://www.epa.gov.safewater/lead

WHAT ARE THE DEFINITIONS OF SOME OF THE TERMS CONTAINED WITHIN THIS REPORT?

1 – MCL – Maximum Contaminant Level: The highest level of contaminant that is allowed in drinking water.

MCL's are set as close to the MCLG's as feasible using the best available treatment technology. MCL violations for many contaminants are based on a running annual average.

MCLG – <u>Maximum Contaminant Level Goal</u> – the level of a contaminant in drinking water below which, there is no known or expected risk to health. MCLG's allow for a margin of safety.

(ppm) - Parts per Million or (mg/L) - Milligrams per Liter: Units of measure for the concentration of a contaminant.

One part per million corresponds to one second in a little over 11.5 days.

(ppb) – Parts per Billion or (ug/L) Micrograms per Liter: Units of measure for the concentration of a contaminant.

One part per billion corresponds to one second in 31.7 years.

(mfl) - Maximum Fibers per Liter: Units of measure for the concentration of a fibrous contaminant.

AL – <u>Action Level</u>: The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements that a water system must follow.

TT – <u>Treatment technique</u>: A required process intended to reduce the level of a contaminant in drinking water.

"<" This is a mathematical symbol that means "less than" ">" is a symbol that means "greater than".

- 2 <u>Turbidity</u>: A measure of the cloudiness of water and is an indication of the effectiveness of our filtration system. The turbidity limit now set by the EPA is 0.3 NTU in 95% of the daily samples and shall not exceed 1 NTU at any time. As reported above, the Newton Falls Water Department highest recorded turbidity result for 2022 was 0.28 and the lowest monthly percentage of samples meeting the acceptable turbidity limits was 100%.
- 3 TTHM's <u>Total Trihalomethanes</u>: Contaminant group whose combined MCL = 80 ug/L and is calculated as the sum of the concentrations of Bromo-di-chloromethane, Di-bromo-chloromethane, Bromoform and Chloroform based on a (RAA) Running Annual Average.
- 4 HAA5 <u>Haloacetic Acids (5)</u>: Contaminant group whose combined MCL is 60 ug/L and is calculated as the sum of the concentrations of the following five acids: Dibromo-acetic, Dichloro-acetic, Monobromo-acetic, Monochloro-acetic, and Trichloro-acetic based on a (RAA) Running Annual Average.
- 5- TOC <u>Total Organic Carbon</u> The value reported under "Level Found" for Total Organic Carbon is the lowest ratio between percentage of TOC actually removed to the percentage of TOC required to be removed. A value greater than one (1) indicates that the water system is in compliance with TOC removal requirements. A value less than one (1) indicates a violation of the TOC removal requirements.

HOW DO I PARTICIPATE IN DECISIONS CONCERNING MY DRINKING WATER?

Public participation and comments are encouraged during regular meetings of the Newton Falls CITY COUNCIL. These meetings generally occur on the 1st and 3rd MONDAY evenings of each month at CITY HALL at 6:00 PM

WHO DO I CONTACT FOR MORE INFORMATION ON MY DRINKING WATER?

Please contact Mr. Jeffery L. Hawkins – Water Plant Superintendent, at his office at (330) 872-1808 during the regular daily business hours of 7:00 AM to 3:00 PM – Monday through Friday.

SOURCE WATER PROTECTION PLAN

The Newton Falls Water Department has completed an Ohio EPA endorsed Source Water Protection Plan. This plan identifies priority contaminant sources within critical portions of the source water assessment area and proposes protective strategies to address those key potential contaminant sources. This Plan can be viewed in its entirety on the City's website at ci.newtonfalls.oh.us or contact 330-872-1808 for a copy.

WATER CONTAMINANTS (UNITS)	MCLG	MCL MAX CONTMN LEVEL	LEVEL FOUND	RANGE OF DETECTIONS	EXCEEDED MCL? 1	SAMPLE YEAR	TYPICAL SOURCE/S OF CONTAMINANT
BACTERIOLOGIC	AL						
TOTAL COLIFORM BACTERIA	0	> 1	0	0	NO	2022	NATURALLY PRESENT IN ENVIRONMENT
TURBIDITY (NTU)	NA	TT	0.28	.03 TO .28	NO ²	2022	SOIL RUNOFF
TURBIDITY (% OF SAMPLES MEETING STD)	NA	TT	100%	100%	NO ²	2022	SOIL RUNOFF
TOTAL ORGANIC CARBON	NA	TT	1.6	1.41 TO 2.15	NO ⁵	2022	NATURALLY PRESENT IN ENVIRONMENT
INORGANIC CONT	AMIN	IANTS					
NITRATE (PPM)	10	10	1.16	<.10 TO 1.16	NO	2022	RUNOFF FROM FERTILIZER USE; LEACHING FROM SEPTIC TANKS OR SEWAGE; EROSION OF NATURAL DEPOSITS
FLUORIDE (PPM)	4	4	1.1	0.79 TO 1.57	NO	2022	EROSION OF NATURAL DEPOSITS; WATER ADDITIVE TO PROMOTE STRONG TEETH; DISCHARGES FROM FERTILIZER AND ALUMINUM FACTORIES
LEAD (PPB)	0	AL = 15	0	NA	NO	2022	CORROSION OF HOUSEHOLD PLUMBING SYSTEMS
			ZERO OF TV	VENTY TWO SAMPLES WAS F	OUND TO HAVE LE	VELS IN EXCES	SS OF THE ACTION LEVEL = 15
COPPER (PPM)	0	AL = 1.3	0.109	NA	NO	2022	CORROSION OF HOUSEHOLD PLUMBING SYSTEMS
			ZERO OF TW	ENTY TWO SAMPLES WAS F	OUND TO HAVE LE	VELS IN EXCES	S OF THE ACTION LEVEL = 1.3
BARIUM (PPM)	2	2	0.022	0.022	NO	2022	DISCHARGE OF DRILLING WASTES; DISCHARGE FROM METAL REFINERIES; EROSION OF NATURAL DEPOSITS
DISINFECTION BY - PROD	UCTS						
TTHMs [TOTAL TRIHALOMETHANES] (PPB)	NA	80	60.33	31.1 TO 80.6	NO (3)	2022	BY-PRODUCT OF DRINKING WATER CHLORINATION
HAA5 [HALOACETIC ACIDS - FIVE] (PPB)	NA	60	44.9	27.8 TO 58.0	NO (4)	2022	BY-PRODUCT OF DRINKING WATER CHLORINATION
RESIDUAL DISINE	ECTA	ANTS					
TOTAL CHLORINE (PPM)	MRDLG=4	MRDL=4	1.6	1.27 TO 1.94	NO	2022	WATER ADDITIVE USED TO CONTROL MICROBES

BACKFLOW PREVENTION TIPS

If you suspect a cross connection exists, Please report it to Newton Falls Water Distribution at 330-872-5656

Why be concerned?

- ALL cross-connections pose a potential health risk.
- Backflow can be a health hazard for your family or other consumers if contaminated water enters your water supply plumbing system and is used for drinking, cooking or bathing.
 Chemical burns, fires, explosions, poisonings, illness and death have all been caused by backflow through cross-connections.
- Backflow occurs more often than you think.
- You are legally responsible for protecting your water supply plumbing from backflow that
 may contaminate drinking water, either your own or someone else's. This includes
 complying with the plumbing code and not creating cross-connections.

What can I do?

- Be aware of and eliminate cross-connections.
- Maintain air gaps. Do not submerge hoses or place them where they could become submerged.
- Use hose bib vacuum breakers on fixtures (hose connections in the basement, laundry room and outside.)
- Install approved, testable backflow preventers on lawn irrigation systems.
- Do not create a connection between an auxiliary water system (well, cistern, body of water) and the water supply plumbing.

What are some common backflow hazards that threaten the homeowner and other consumers?

- Hose connections to chemical solution aspirators to feed lawn and shrub herbicides, pesticides or fertilizers.
- Lawn irrigation systems.
- Chemically treated heating systems.
- Hose connections to a water outlet or laundry tub.
- Swimming pools, hot tubs, spas.
- Private and/or non-potable water supplies located on the property.
- Water-operated sump pump devices.
- Feed lots/livestock holding areas or barnyards fed through pipes or hoses from our water supply plumbing.

What are examples of cross-connection and backflow scenarios?

- Soapy water or other cleaning compounds backsiphon into the water supply plumbing through a faucet or hose submerged in a bucket or laundry basin.
- Pool water backsiphons into the water supply plumbing through a hose submerged in a swimming pool.
- Fertilizers/pesticides backsiphon into the water supply plumbing through a garden hose attached to a fertilizer/pesticide sprayer.
- Chemicals/pesticides and animal feces drawn into the water supply plumbing from a lawn irrigation system with submerged nozzles.
- Bacteria/chemicals/additives in a boiler system backsiphon into the water supply plumbing.
- Unsafe water pumped from a private well applies backpressure and contaminates the public water supply through a connection between the private well discharge and the potable water supply plumbing.